\(\int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx\) [110]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 106 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=\frac {7 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {7 a^2 \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

7/4*a^(3/2)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+7/4*a^2*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1
/2*a^2*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2841, 21, 2851, 2852, 212} \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=\frac {7 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {7 a^2 \tan (c+d x)}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {a^2 \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^3,x]

[Out]

(7*a^(3/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (7*a^2*Tan[c + d*x])/(4*d*Sqrt[a
+ a*Cos[c + d*x]]) + (a^2*Sec[c + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2841

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
 + a*d))), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1
)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1
] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}-\frac {1}{2} a \int \frac {\left (-\frac {7 a}{2}-\frac {7}{2} a \cos (c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{4} (7 a) \int \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \, dx \\ & = \frac {7 a^2 \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{8} (7 a) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx \\ & = \frac {7 a^2 \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}-\frac {\left (7 a^2\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d} \\ & = \frac {7 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {7 a^2 \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.92 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \left (7 \sqrt {2} \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^2(c+d x)-3 \sin \left (\frac {1}{2} (c+d x)\right )+7 \sin \left (\frac {3}{2} (c+d x)\right )\right )}{8 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^3,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(7*Sqrt[2]*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos
[c + d*x]^2 - 3*Sin[(c + d*x)/2] + 7*Sin[(3*(c + d*x))/2]))/(8*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(550\) vs. \(2(90)=180\).

Time = 1.56 (sec) , antiderivative size = 551, normalized size of antiderivative = 5.20

method result size
default \(\frac {\sqrt {a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (28 a \left (\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-28 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a -28 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a -28 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +7 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +18 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{2 \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right )^{2} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right )^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(551\)

[In]

int((a+cos(d*x+c)*a)^(3/2)*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

1/2*a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(28*a*(ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1
/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1
/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^4+
(-28*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*
a^(1/2)+2*a))*a-28*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1
/2*c)^2)^(1/2)*a^(1/2)-2*a))*a-28*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x+1/2*c)^2+7*ln(4/
(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*
a))*a+7*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1
/2)*a^(1/2)-2*a))*a+18*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/(2*cos
(1/2*d*x+1/2*c)-2^(1/2))^2/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.53 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=\frac {7 \, {\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (7 \, a \cos \left (d x + c\right ) + 2 \, a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/16*(7*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*co
s(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(7*a*cos
(d*x + c) + 2*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(3/2)*sec(d*x+c)**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3216 vs. \(2 (90) = 180\).

Time = 0.93 (sec) , antiderivative size = 3216, normalized size of antiderivative = 30.34 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

1/16*((7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) +
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*
sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*
a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2
*d*x + 1/2*c) + 2) + 4*a*sin(5/2*d*x + 5/2*c) - 12*a*sin(3/2*d*x + 3/2*c) - 56*a*sin(1/2*d*x + 1/2*c))*cos(4*d
*x + 4*c)^2 + 4*(7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x +
 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2
*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*log(2*cos(1/2*d*x +
 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) -
7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(
2)*sin(1/2*d*x + 1/2*c) + 2) - 12*a*sin(3/2*d*x + 3/2*c) - 56*a*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c)^2 + (7*
sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)
*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*c
os(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1
/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*c
os(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/
2*c) + 2) + 4*a*sin(5/2*d*x + 5/2*c) - 12*a*sin(3/2*d*x + 3/2*c) - 56*a*sin(1/2*d*x + 1/2*c))*sin(4*d*x + 4*c)
^2 - 160*a*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) - 168*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) - 72*a*cos(3/2*
d*x + 3/2*c)*sin(2*d*x + 2*c) + 4*(7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqr
t(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2
*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*l
og(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*
x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x
+ 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 12*a*sin(3/2*d*x + 3/2*c) - 56*a*sin(1/2*d*x + 1/2*c))*sin(2*
d*x + 2*c)^2 + 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1
/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c
)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*
sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)
*sin(1/2*d*x + 1/2*c) + 2) + 4*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(13/2*d*x + 13/2*c) - 12*(a*sin(
4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(11/2*d*x + 11/2*c) - 48*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*c
os(9/2*d*x + 9/2*c) + 2*(7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1
/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d
*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*log(2*cos(1
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
 + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) -
 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 2*(7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c
)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 7*sqrt
(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin
(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1
/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 12*a*sin(3/2*d*x + 3/2*c) - 56*a*sin(1/2*d*x + 1/2*c))
*cos(2*d*x + 2*c) + 40*a*sin(7/2*d*x + 7/2*c) + 2*(4*a*cos(2*d*x + 2*c) + 23*a)*sin(5/2*d*x + 5/2*c) + 6*a*sin
(3/2*d*x + 3/2*c) - 56*a*sin(1/2*d*x + 1/2*c))*cos(4*d*x + 4*c) + 4*(7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*
a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2
*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d
*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 6*a*sin(3/2*d*x + 3/2*c) -
56*a*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) - 4*(a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c) + a)*sin(13/2*d*x +
 13/2*c) + 12*(a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c) + a)*sin(11/2*d*x + 11/2*c) + 48*(a*cos(4*d*x + 4*c)
+ 2*a*cos(2*d*x + 2*c) + a)*sin(9/2*d*x + 9/2*c) + 4*(4*a*sin(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) - 20*a*cos(7/2
*d*x + 7/2*c) - 21*a*cos(5/2*d*x + 5/2*c) - 9*a*cos(3/2*d*x + 3/2*c) + (7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)
^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(
2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(
1/2*d*x + 1/2*c) + 2) + 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/
2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 7*sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*
x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 12*a*sin(3/2*d*x + 3/2*c
) - 56*a*sin(1/2*d*x + 1/2*c))*sin(2*d*x + 2*c))*sin(4*d*x + 4*c) + 80*(2*a*cos(2*d*x + 2*c) + a)*sin(7/2*d*x
+ 7/2*c) + 8*(2*a*cos(2*d*x + 2*c)^2 + 2*a*sin(2*d*x + 2*c)^2 + 23*a*cos(2*d*x + 2*c) + 11*a)*sin(5/2*d*x + 5/
2*c) + 24*a*sin(3/2*d*x + 3/2*c) - 56*a*sin(1/2*d*x + 1/2*c))*sqrt(a)/((sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2)
*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin
(2*d*x + 2*c)^2 + 2*(2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 4*sqrt(2)*cos(2*d*x + 2*c) + sqr
t(2))*d)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.26 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=-\frac {\sqrt {2} {\left (7 \, \sqrt {2} a \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (14 \, a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{16 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

-1/16*sqrt(2)*(7*sqrt(2)*a*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)
))*sgn(cos(1/2*d*x + 1/2*c)) + 4*(14*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 9*a*sgn(cos(1/2*d*x
+ 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^2)*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} \sec ^3(c+d x) \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

[In]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^3,x)

[Out]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^3, x)